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Abstract

It has been suggested that modern rail systems might exploit so-called floating tracks, to minimise traffic
vibration and noise. This paper discusses the transverse deflexion of an infinite Bernoulli–Euler beam
mounted on discrete elastic supports, a model considered suitable to explore low-frequency vibrations and
associated resonances in such systems. The dynamics is governed by the eigenvalues and eigenvectors of a
transfer matrix, which relates the deflexion of any beam span to the deflexions of its neighbours. Important
‘‘extensive’’ contributions, rather than ‘‘spatially damped’’ modes, occur whenever the transfer matrix has
one or more eigenvalues of modulus 1. Responses such as the so-called ‘‘pinned–pinned resonance’’ occur
when these eigenvalues of modulus 1 are real (i.e., the eigenvalues are 81); and further modes
corresponding to two complex conjugate eigenvalues coalescing into 81 arise at other wavelengths, when
the supports are elastic—i.e., in addition to the resonant modes identified in many earlier analyses assuming
fixed supports. There is no average energy flux from span to span for any mode defined by a real
eigenvector, and we infer that zero-energy transfer between spans is a characteristic of the resonant
response of the system to a stationary vibrating source located on some particular span.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Light or overhead rail (‘‘skytrain’’) transport systems help to alleviate urban passenger traffic
congestion, especially in very large cities such as Bangkok. It has been suggested that a composite
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rail and longitudinal concrete beam (‘‘combined rail’’) mounted on discrete resilient supports,
such as in a floating ladder track, may produce much less vibration and noise [1,2]. The transverse
deflexion of a continuous Bernoulli–Euler beam with discrete elastic supports is discussed in this
paper, as a theoretical first step to examine vibrations which may occur in a floating rail track.
Our simple model may not satisfactorily predict high-frequency noise [3,4], but low-frequency
vibrations and any associated resonance phenomena can be explored.

The deflexion of a continuous beam with a few rigid supports is well documented in the classical
engineering literature (e.g., Ref. [5]), but the free (natural) vibration of a beam with intermediate
elastic supports was not investigated until relatively recently. Kukla [6,7] obtained an nth order
determinant, which defines the natural frequencies of an axially loaded beam with concentrated
masses and n intermediate elastic supports. Noting the obvious disadvantage of a large order
determinant when n is large, Luo [8] considered the vibration of an infinite uniform beam with
equidistant discrete supports, with an axial load and viscoelastic damping included in the
mathematical model. The mathematical approach adopted by Luo is favoured in this paper, but
we prefer our simpler model to clarify the governing role of the eigenvalues and eigenvectors of
the transfer matrix.

The mathematical model is described in Section 2, and its solution for free (natural) vibrations
is discussed in Section 3, where the transfer matrix is introduced. The eigenvalues of the transfer
matrix are considered in detail in Section 4, and the important distinction between ‘‘spatially
damped’’ and ‘‘extensive’’ modes is made in Section 5. Energy transfer between spans is analysed
in Section 6, with reference also made to an associated Appendix. Resonant extensive modes are
examined in Section 7, where some specific calculations are presented. A summary of the results is
given in Section 8.

2. The mathematical model

The Bernoulli–Euler equation for the small transverse deflexion Zðx; tÞ of a beam is

EIZxxxx þ mZtt ¼ f ðx; tÞ; ð1Þ

where E is the elasticity modulus and I the moment of inertia of the beam of mass m per unit
length, and f ðx; tÞ is a possible forcing function due to an external load.

In this paper, the beam is assumed to be initially horizontal and infinite with equal discrete
elastic supports, at points spaced a distance L apart. At every such point ðx ¼ nL :
n ¼ 0;71;72;y sayÞ; the boundary conditions to be applied to the solutions to Eq. (1) are:
(i) Z is continuous; (ii) @Z=@x is continuous; (iii) @2Z=@x2 is continuous; and (iv) @3Z=@x3 has jump
discontinuity �gZ=ðEIÞ; where g is the elastic support stiffness. The effect of the elastic supports
might also be represented in the governing equation, such that Eq. (1) is replaced by

EIZxxxx þ mZtt þ g
XN

n¼�N

dðx � nLÞZðx; tÞ ¼ f ðx; tÞ; ð2Þ

where dðxÞ denotes the Dirac delta function.
Although it is assumed that the beam is simply supported and always maintains its points of

contact with the elastic supports, the transverse beam deflexions there (relative to the initial
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horizontal position) may be non-zero, since the elasticity of the supports means that these points
of contact can move—unlike the more familiar case of rigid supports, where the points of contact
are fixed.

3. Natural vibrations

Disturbances may persist for some time after any forcing function is removed (i.e., when
f ðx; tÞ ¼ 0), if the kinetic energy transfer into heat is slow. There can also be an important synergy
between a forcing function and the natural vibrations of the system, such that the response of the
system to particular forcing frequencies is most pronounced. This phenomenon is often explored
in practice by ‘‘resonance testing’’, where the response of a structure to a localised stationary
vibrating load is an important test of its safety. Thus free (natural) vibrations may be of interest
not only mathematically but also physically, and it may be that they occur not only in the vicinity
of their original source but also at significant distances away.

When f ðx; tÞ ¼ 0 and the Fourier form Zðx; tÞ ¼ RefZðxÞeiotg is introduced into the beam
equation (1), the resulting homogeneous fourth order ordinary differential equation for the spatial
component of this normal mode has the well-known solution

ZðxÞ ¼An cosh½kðx � nLÞ	 þ Bn sinh½kðx � nLÞ	

þ Cn cos½kðx � nLÞ	 þ Dn sin½kðx � nLÞ	; ð3Þ

in any span nLoxoðn þ 1ÞL ðn ¼ 0;71;72;yÞ; where the inverse of the dispersion relation

k 

mo2

EI

� �1=4

;

defines the non-negative wave number associated with the free undamped frequency o: The
integration constants An;Bn;Cn;Dn in the present context are generally complex, however (see
later).

Application of the conditions stated in Section 2, at the boundaries of successive spans between
the elastic supports, is algebraically simpler via the four functions

1

2
Zþ

1

2k2
Z00 ¼ An cosh½kðx � nLÞ	 þ Bn sinh½kðx � nLÞ	;

1

2
Z�

1

2k2
Z00 ¼ Cn cos½kðx � nLÞ	 þ Dn sin½kðx � nLÞ	;

1

k
Z0 ¼An sinh½kðx � nLÞ	 þ Bn cosh½kðx � nLÞ	

� Cn sin½kðx � nLÞ	 þ Dn cos½kðx � nLÞ	;

1

2k3
Z000 �

1

2k
Z0 ¼ Cn sin½kðx � nLÞ	 � Dn cos½kðx � nLÞ	:

Thus the first three of these four functions are continuous at the boundaries, and the fourth has a
jump discontinuity �gZ=ð2k3EIÞ: At the boundary x ¼ L between the two spans 0oxoL and
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Loxo2L for example, we have

A0 cosh aþ B0 sinh a ¼ A1;

C0 cos aþ D0 sin a ¼ C1;

A0 sinh aþ B0 cosh a� C0 sin aþ D0 cos a ¼ B1 þ D1;

C0 sin a� D0 cos a ¼D1 þ 2bðA1 þ C1Þ


D1 þ 2bðA0 cosh aþ B0 sinh aþ C0 cos aþ D0 sin aÞ; ð4Þ

where zero and unity subscripts denote the respective integration constants in each of these two
adjacent spans as indicated above. The dimensionless wave number a ¼ kL and the coefficient
b ¼ G=a3 introduced here, where G ¼ gL3=ð4EIÞ defines the relative elasticity of the equidistant
discrete supports, are important parameters. In this paper, special emphasis is given to the relative
elasticity value G ¼ 25; to calculate the response using representative physical parameters for the
floating ladder track designed by Wakui et al. [2]—namely g ¼ 1:5� 107 N=m; L ¼ 1:5 m; and
EIE5� 105 N m2:

From Eq. (4) it follows that the respective sets of integration constants (which we shall call
deflexion coefficient vectors) are related by

ðA1;B1;C1;D1Þ
T ¼ MðA0;B0;C0;D0Þ

T; ð5Þ

in terms of the 4 � 4 transfer matrix M given by

cosh a sinh a 0 0

sinh a� 2b cosh a cosh a� 2b sinh a �2b cos a �2b sin a

0 0 cos a sin a

2b cosh a 2b sinh a 2b cos a� sin a cos aþ 2b sin a

0
BBB@

1
CCCA;

with superscript T denoting the transpose of the respective constant vectors. This relation applies
for any two adjacent spans, so that beam vibrations must propagate in a fashion governed by
iteration of the matrix M or its reciprocal M�1 (the determinant of M is 1Þ: thus

ðAn;Bn;Cn;DnÞ
T ¼ MnðA0;B0;C0;D0Þ

T; ð6Þ

defines the deflexion in any nth span to the right of the span 0oxoL (cf. also Ref. [8]), and

ðA�n;B�n;C�n;D�nÞ
T ¼ ðM�1Þn ðA0;B0;C0;D0Þ

T; ð7Þ

defines the deflexion in any nth span to its left. Moreover, the vibration is governed by the
eigenvalues fli: i ¼ 1; 2; 3; 4g and the corresponding eigenvectors fvi: i ¼ 1; 2; 3; 4g of the transfer
matrix M; defined by Mvi ¼ livi ð8iAf1; 2; 3; 4gÞ: As discussed in the following section, the four
eigenvalues of M constitute two reciprocal pairs, so the eigenvalues of M�1 are identical with the
eigenvalues of M:
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4. Eigenvalues of the transfer matrix

The characteristic equation for the eigenvalues of the transverse matrix M introduced in the
previous section may be written as a quadratic

ðm� cosh aþ b sinh aÞðm� cos a� b sin aÞ þ b2 sinh a sin a ¼ 0; ð8Þ

or

m2 � ½cosh aþ cos a� bðsinh a� sin aÞ	m

þ cosh a cos aþ bðcosh a sin a� sinh a cos aÞ ¼ 0; ð9Þ

where

2m 
 lþ
1

l
; ð10Þ

which is equivalent to the quartic defining the four eigenvalues fli : i ¼ 1; 2; 3; 4g: Thus, it is
immediately apparent that the four eigenvalues constitute two reciprocal pairs, where each pair
corresponds to one of the two roots of the quadratic equation in m (cf. [3]). Also, since Mv ¼ lv
implies M�1v ¼ l�1v; the matrix M and its reciprocal matrix M�1 have the same eigenvalues,
where the eigenvector corresponding to the eigenvalue l of M is the eigenvector corresponding to
the eigenvalue l�1 of M�1:

For ‘‘soft supports’’ such that b51; from Eq. (8) there are two real roots

m ¼ cos aþ b sin aþ b2 sinh a sin a
cosh a� cos a

þ Oðb4Þ;

and

m ¼ cosh a� b sinh a� b2 sinh a sin a
cosh a� cos a

þOðb4Þ;

yielding, respectively, cos a and cosh a—and hence respectively eigenvalues l ¼ e7ia of modulus 1
and real eigenvalues l ¼ e7a—in the zero support limit b-0: However, the discriminant of the
quadratic may be expressed as

D ¼ ½cosh a� cos a� bðsinh aþ sin aÞ	2 � 4b2sinh a sin a; ð11Þ

which is obviously not positive definite for all values of a and b: Thus unlike the case of a free
unsupported beam corresponding to b ¼ 0; the values of m may be complex. Fig. 1 displays
contours of the discriminant D in the ab-plane, together with superimposed curves of the
relationship b ¼ G=a3 for various values of the parameter G; where some of these superimposed
curves intersect both negative and positive D contours. For values around G ¼ 25; of special
interest in this paper, these curves cut through quite a large part of the Do0 region at smaller a
(but not the small island at larger a near b ¼ 1).

The curves for the various values of G in Fig. 2 show how m depends upon a; when m does take
real values. Of major interest are regions where at least one of the two m values has magnitude
jmjp1; such that the two corresponding eigenvalues l ¼ m7i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
either constitute a reciprocal

complex conjugate pair each of modulus 1 (when jmjo1) or take the real values 81 (when jmj ¼ 1).
Any eigenvalue of modulus 1 (real or imaginary) produces an ‘‘extensive’’ mode, in the absence of
any dissipation—on the other hand, real m with magnitude jmj > 1 such that the corresponding
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Fig. 1. Contours of discriminant D (solid lines for �30;�20;�10; 0; 100; 500) in the ab-plane, with superimposed b
curves for various G (broken lines for 1; 10; 25; 100; 500 as indicated).

Γ=35
Γ=25
Γ=10
Γ=1

–3

–2

–1

0

1

2

3

4

5

µ

2 4 6 8 10

α

Fig. 2. Real m curves for various Gð1; 10; 25; 35Þ:

R.J. Hosking et al. / Journal of Sound and Vibration 272 (2004) 169–185174



eigenvalues l ¼ m7
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 1

p
are real produces a ‘‘spatially damped’’ mode (see later). In passing,

let us also note that by writing m ¼ cos y such that lþ 1=l ¼ 2 cos y; eigenvalues of modulus 1
may be expressed in the polar form l ¼ e7iy:

We recall that G ¼ 25 is specifically representative of a floating ladder track (with physical
parameters g ¼ 1:5 � 107 N=m; L ¼ 1:5 m; and EI approximately 5 � 105 N m2). Careful
computation for G ¼ 25 in the real m region showed that (cf. Fig. 2):

(1) for 3:0275oao3:0560; where 0omo1 on the upper branch and we find �0:5597omo0 on
the lower branch, there are two reciprocal complex conjugate pairs of eigenvalues with
modulus 1;

(2) when the upper branch of the m curve passes through þ1 at aE3:0560; the corresponding
former complex conjugate pair coalesces into the real eigenvalue l ¼ þ1 (repeated),
while the reciprocal complex conjugate eigenvalue pair (with modulus 1) from the lower branch
remains;

(3) at larger a; one of this pair of real eigenvalues corresponding to the upper branch is greater
than 1 and the other is less than 1 (recall that the eigenvalues occur as reciprocal pairs)—whereas
the reciprocal complex conjugate eigenvalue pair (with modulus 1) from the lower branch
remains;

(4) the reciprocal pair of real eigenvalues from the upper branch always remains as a
increases further, with the magnitude of the eigenvalue greater than 1 rapidly and monotonically
increasing towards 2m; and the magnitude of the other of course monotonically decreasing
towards zero;

(5) on the other hand, when the lower branch of the m curve passes through �1 at a ¼ p; the
reciprocal complex conjugate pair of eigenvalues (with modulus 1) associated with the lower
branch coalesces into the real eigenvalue �1 (repeated);

(6) then for a > p there is an interval with mo� 1; where this pair of eigenvalues corresponding
to the lower branch of the m curve are also real, with one of magnitude greater than 1 and the
other of course of magnitude less than 1 (i.e., the former reciprocal complex conjugate pair of
eigenvalues are replaced by another reciprocal pair of real eigenvalues);

(7) when the lower branch of the m curve again passes through �1 (in this case at aE4:1315),
this second pair of real eigenvalues coalesces into l ¼ �1 (repeated);

(8) for even larger a where jmjo1; the second pair of real eigenvalues associated with the lower
branch of the m curve is again replaced by a reciprocal complex conjugate pair of eigenvalues (with
modulus 1)—until this branch passes through 1 at a ¼ 2p; when this pair coalesces into the real
eigenvalue l ¼ þ1 (repeated);

(9) then for a > 2p there is a narrow interval with m > 1; where the pair of eigenvalues
corresponding to the lower branch of the m curve are again real, with one of magnitude greater
than 1 and the other of magnitude less than 1; and so on.

The complex conjugate pair of m values represented in Fig. 3 correspond to the
intersection of the G ¼ 25 curve with the negative discriminant (negative D) region at
smaller non-zero values of a in Fig. 1, as is also typical for other G values shown in Fig. 2.
Relation (10) then yields four complex eigenvalues, constituting two complex conjugate pairs,
where each member of one pair is the reciprocal of a member of the other pair. However, for
G ¼ 25 the range of a where there are such eigenvalues of modulus 1 is very narrow ( just to the
left of a ¼ 3:0275).
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Important features of the behaviour can be defined analytically. Thus from (9), modes
corresponding to the eigenvalue l ¼ �1 (when m ¼ �1) occur where

cosh
a
2
cos

a
2

h i2
1� b tanh

a
2
� tan

a
2

� �h i
¼ 0; ð12Þ

and those corresponding to l ¼ þ1 (when m ¼ þ1) occur where

sinh
a
2
sin

a
2

h i2
1� b coth

a
2
þ cot

a
2

� �h i
¼ 0: ð13Þ

Thus l ¼ �1 at a ¼ ð2m þ 1Þp where m ¼ 0;71;72;y; and for ba0 also at values of a given by

1 � b tanh
a
2
� tan

a
2

� �
¼ 0; ð14Þ

and l ¼ þ1 at a ¼ 2mp where m ¼ 0;71;72;y; and for ba0 also at values of a given by

1 � b coth
a
2
þ cot

a
2

� �
¼ 0: ð15Þ

One may deduce that there are always ranges of a near a ¼ mp ðm ¼ 71;72;yÞ where jmj > 1;
although these ranges narrow as the wave number increases (cf. again Fig. 2). Thus for ab1
(when b ¼ G=a3

51) the transcendental equations (14) and (15) reduce to cotða=2ÞE� b and
tanða=2ÞEb; respectively, hence mo� 1 on intervals where a > ð2 m þ 1Þp (for m ¼ 0; 1; 2;y) and
m > 1 on intervals where a > 2mp (for m ¼ 1; 2;y). These results also follow directly from Eq. (9)
for b51; previously associated with ‘‘soft supports’’, but where m ¼ cos aþ b sin aþ Oðb2Þ now
defines the smaller root and the second root has the exponentially large value m ¼ cosh a�
b sinh aþ Oðb2Þ; for sufficiently large a:
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5. Spatially damped and extensive modes

Let us first consider the simplest case, where the deflexion coefficient vector in the span 0oxoL

is proportional to the eigenvector v corresponding to an eigenvalue l of the transfer matrix M:
Thus for ðA0;B0;C0;D0Þ

T ¼ cv where c is a constant, from Eq. (6) the deflexion coefficient vector
in any nth span to the right ðnLoxoðn þ 1ÞLÞ is then

ðAn;Bn;Cn;DnÞ
T ¼ lnðA0;B0;C0;D0Þ

T;

and from Eq. (7) the deflexion coefficient vector in any nth span to the left ð�ðn þ 1ÞLoxo� nLÞ
is

ðA�n;B�n;C�n;D�nÞ
T ¼

1

l

� �n

ðA0;B0;C0;D0Þ
T:

Moreover, Eq. (3) for the beam deflexion in any nth span to the right, therefore may be expressed
as ZðxÞ ¼ ðAn;Bn;Cn;DnÞwn ¼ clnvTwn where

wT
n ¼ ðcosh½kðx � nLÞ	; sinh½kðx � nLÞ	; cos½kðx � nLÞ	; sin½kðx � nLÞ	Þ; ð16Þ

or analogously involving the reciprocal eigenvalue for the deflexion in any nth span to the left.
More generally, for all values of a such that the four eigenvalues fli : i ¼ 1; 2; 3; 4g of the

transfer matrix M are distinct, the four corresponding eigenvectors fvi : i ¼ 1; 2; 3; 4g are linearly
independent (cf. Ref. [9], for example). Then any deflexion coefficient vector in the span 0oxoL

may be expressed as a linear combination of the four eigenvectors—namely

ðA0;B0;C0;D0Þ
T ¼ c1v1 þ c2v2 þ c3v3 þ c4v4; ð17Þ

where the ci are constants. Thus from Eq. (6) the deflexion coefficient vector in any nth span to the
right is

ðAn;Bn;Cn;DnÞ
T ¼ ln

1c1v1 þ ln
2c2v2 þ ln

3c3v3 þ ln
4c4v4; ð18Þ

and the deflexion 8nAf0; 1; 2; 3;yg is

ZðxÞ ¼ c1l
n
1v

T
1wn þ c2l

n
2v

T
2wn þ c3l

n
3v

T
3wn þ c4l

n
4v

T
4wn ð19Þ

with wn again the basis vector as defined above. In analogous expressions for spans to the left,
each of the eigenvalues is of course replaced by its reciprocal.

However, to ensure that the deflexions (either to the right or the left) remain bounded as n-N;
only those terms involving real or complex eigenvalues with modulus less than or equal to 1 (i.e.,
jljp1) may be retained. Thus any term in Eq. (17) or (19) involving an eigenvalue with modulus
greater than 1 must be removed, by setting its coefficient zero (cf. also Ref. [8]), whereas this term
remains in the analogous expressions for spans to the left (since the eigenvalue involved is the
respective reciprocal). On the other hand, any term in Eq. (17) or (19) involving an eigenvalue
with modulus less than 1—or in analogous expressions for spans to the left, a reciprocal
eigenvalue of modulus less than 1—vanishes as n-N; so such terms are ‘‘spatially damped’’. In
contrast, any term involving a real or complex eigenvalue of modulus 1 persists as n-N; and is a
part of the ultimately dominant ‘‘extensive’’ deflexion—i.e., the deflexion component which is not
spatially damped. Let us now recall the hierarchical behaviour of the eigenvalues, as described in
the preceding section.
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At any a where m is real and there is a branch on which jmj > 1; there is a reciprocal pair of real
eigenvalues, one of which is greater than 1 and the other less than 1. For deflexions to the right,
the first of these real eigenvalues is rejected and the second produces a spatially damped
component; for deflexions to the left, which is of course governed by eigenvalue reciprocals, the
first produces a spatially damped component and the second is rejected. Thus the corresponding
deflexion components split into distinctive spatially damped forms, to the right and to the left. At
those a values where m is real and jmj > 1 on both branches, such that all four eigenvalues are real,
this is true for the total deflexion. The case of complex m at smaller a values is similar, since two of
the four resulting complex eigenvalues have modulus greater than 1 and the other two (their
reciprocals) have modulus less than 1.

However, there is always at least one reciprocal pair of complex conjugate eigenvalues of
modulus 1 for real m at any a where jmjo1; which is therefore a sufficient condition for an
extensive deflexion component. Let us recall that for values of a where jmj ¼ 1; a former reciprocal
pair of complex conjugate eigenvalues coalesces into l ¼ �1 (repeated) when m ¼ �1 or l ¼ þ1
(repeated) when m ¼ þ1; respectively. As discussed later, in these cases resonant extensive modes
characterised by zero average energy transfer occur, although the deflexion in one span (say
0oxoL) may be successively ‘‘twinned’’ in every other span. The transfer matrix M is degenerate
when one of the eigenvalues is repeated, such that with l ¼ 81 of algebraic multiplicity 2 there is
geometric multiplicity 1 (i.e., only one corresponding eigenvector), although other linearly
independent basis vectors are usually constructed in order to span the vector space. Hence when
l4 ¼ l1 (say) in our context, the form of the general solution replacing Eq. (19) is

ZðxÞ ¼ ðc1l
n
1 þ nc4ÞvT1wn þ c2l

n
2v

T
2wn þ c3l

n
3v

T
3wn þ c4l

n
1v

T
4wn; ð20Þ

with v4 constructed such that ðM� l1IÞv4 ¼ v1 where I is the unit matrix. However, the constant
c4 must be set to zero in this expression, to again ensure that the deflexions remain bounded as
n-N: Thus in effect a reduced form of Eq. (19), without the fourth term on the right-hand side,
remains applicable—and in addition of course, any term involving an eigenvalue of modulus
greater than 1 is also omitted, as discussed above.

6. Energy transfer

Multiplying the Bernoulli–Euler equation (1) by the time derivative of the complex conjugate
Znðx; tÞ of the deflexion, followed by an integration over the nth span nLoxoðn þ 1ÞL; yields the
time rate of change of its total (kinetic and potential) energy:

d

dt

Z ðnþ1ÞL

nL

1

2
m

@Z
@t

����
����
2

þ
1

2
EI

@2Z
@x2

����
����
2

 !
dx ¼ Re EI �

@Zn

@t

@3Z
@x3

þ
@2Zn

@x@t

@2Z
@x2

� �� �ðnþ1ÞL

nL

: ð21Þ

The terms on the right side of Eq. (21) represent the energy flux through the span, and their time
average over any oscillation suitably defines the energy transfer. The first involves the shear
�EI@3Z=@x3 and the second term the bending moment EI@2Z=@x2; in relevant products with the
complex conjugates of the beam velocity and angular velocity for the shear and bending energy
rates, respectively.
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Let us now proceed to consider the time-averaged contributions to the energy flux in detail,
from the various normal modes defined by the solution form established in Section 3. Thus the
real basis set for the deflexion Zðx; tÞ ¼ RefZðxÞeiotg over the nth span consists of eight terms—
namely

cosh ½kðx � nLÞ	 cosðotÞ; cosh½kðx � nLÞ	 sinðotÞ;f

sinh½kðx � nLÞ	 cosðotÞ; sinh½kðx � nLÞ	 sinðotÞ;

cos½kðx � nLÞ	 cosðotÞ; cos½kðx � nLÞ	 sinðotÞ;

sin½kðx � nLÞ	 cosðotÞ; sin½kðx � nLÞ	 sinðotÞg:

The average of each of the consequent products for the two quadratic forms on the right side of
Eq. (21) may be represented by 8 � 8 matrix displays, where rows and columns correspond to the
eight real basis functions and indicate their input into the left and right components of the two
quadratic forms, respectively (cf. the Appendix). Hence in combination we have the remarkably
simple analogous matrix display for the average energy flux per oscillation:

0 0 0 1 0 0 0 0

0 0 �1 0 0 0 0 0

0 �1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 �1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 �1 0 0 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

Consequently, the real quadratic form

iEIok3ðAnBn

n � An

nBn þ Cn

n Dn � CnDn

nÞ ¼ EIok3awnNan; ð22Þ

defines the average energy flux from left to right through the nth span, where the deflexion
coefficient vector ðAn;Bn;Cn;DnÞ

T in the nth span is now conveniently denoted by an; the matrix

N ¼

0 �i 0 0

i 0 0 0

0 0 0 i

0 0 �i 0

0
BBB@

1
CCCA;

and the dagger denotes the complex conjugate transpose. In the next span to the right—i.e., in
ðn þ 1ÞLoxoðn þ 2ÞL; where the transfer matrix produces the deflexion coefficient vector Man—
result (22) remains. This follows because the matrix quadratic form awnM

TNMan 
 awnNan since
MTNM ¼ N; as may be shown directly. Result (22) also applies in the immediate span to the
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left—i.e., in ðn � 1ÞLoxonL; where the deflexion coefficient vector is M�1an—because N�1 
 N

and awnðM
�1ÞTN�1M�1an 
 awnNan: Thus the energy flux from some distant source to the left is

identical through any span; and the same may be said for a distant source to the right, when the
energy propagates in the opposite direction (right to left).

7. Resonance

Although an extensive deflexion occurs whenever there is a real or complex eigenvalue of
modulus 1, the real eigenvalues l ¼ 81 at certain values of a are particularly important. Indeed, it
now emerges that zero-energy transfer from span to span characterises the resonant response of
the beam to a stationary vibrating load.

Let us first recall from Section 4 that the reciprocal pair of complex conjugate eigenvalues (of
modulus 1) for aop; arising when the lower branch of the real m curve for G ¼ 25 in Fig. 2 first
passes through �1; coalesces into the repeated eigenvalue l ¼ �1 at a ¼ p—i.e., when k ¼ p=L:
From the discussion in Section 5, the extensive mode at a ¼ p is given by the simple form (where c

is a constant)

ZðxÞ ¼ ð�1Þnc sin p
x

L
� n

� �h i
ðn ¼ 0;71;72;yÞ; ð23Þ

since the corresponding eigenvector is v ¼ ð0; 0; 0; 1Þ and the other two eigenvalues are real but not
of magnitude 1. Eq. (23) defines the fundamental mode sometimes referred to as the ‘‘first pinned–
pinned resonance’’ (cf. Fig. 4(a) for c ¼ 1 and L ¼ 1:5 m). It is notable that Eq. (22) implies there
is no average energy flux from span to span. Similarly, at a ¼ 2p the real eigenvalue l ¼ þ1 of
multiplicity 2 with eigenvector v ¼ ð0; 0; 0; 1Þ produces the mode (cf. Fig. 4(b) for c ¼ 1 and
L ¼ 1:5 m)

ZðxÞ ¼ c sin 2p
x

L
� n

� �h i
ðn ¼ 0;71;72;yÞ: ð24Þ

From Eq. (12) we know that l ¼ �1 also occurs at a ¼ ð2 m þ 1Þp; where m ¼ 1; 2;y; and from
Eq. (13) that l ¼ þ1 also occurs at a ¼ 2mp where m ¼ 2; 3;y : Thus there are two countably
infinite sets of resonant extensive modes with elements of sine form analogous to Eq. (23) or (24)
and progressively higher wave numbers (shorter wavelengths), producing no average energy flux
from span to span. For these resonant ‘‘pinned–pinned’’ modes, it is notable that the deflexion is
zero at the supports.

However, let us now recall from Section 4 that when ba0 there are also other values of a where
jmj ¼ 1 such that l ¼ �1 or +1, given by Eqs. (14) and (15), respectively. From the lower branch
of the real m curve for G ¼ 25 shown in Fig. 2, for each of the above values of a there is another
somewhat larger value at which the reciprocal complex conjugate pair again coalesces into the
same repeated eigenvalue (alternately l ¼ �1 and þ1) of multiplicity 2 and the other two
eigenvalues are real but not of magnitude 1, commencing with l ¼ �1 at aE4:1315 > p and
l ¼ þ1 at aE6:4845 > 2p: The corresponding extensive modes are discussed below and are found
to be non-zero at the discrete supports, which are not fixed but elastic and therefore may move
vertically, as mentioned in Section 2.
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In contrast, on the upper branch of the real m curve there is only one non-zero value
(aE3:0560op for G ¼ 25) where jmj ¼ 1: Here one of two reciprocal complex conjugate pairs of
eigenvalues of modulus 1 coalesces into l ¼ þ1 (repeated) given by Eq. (15), but the other
complex conjugate pair remains. It proved necessary to evaluate this a value very accurately (as
a ¼ 3:05600517), to ensure that the eigenvalues (all of modulus 1) were accurately rendered as
fþ1;þ1;�0:559770:8287ig; and the relevant eigenvectors as ð0:6134;�0:5582; 0:0239; 0:5582Þ
and the complex pair ð0:173170:3268i;�0:208680:3320i; 0:035870:0676i;�0:472770:6928iÞ:
The component of the extensive deflexion defined by the real eigenvector corresponding to l ¼ þ1
(repeated) is smoothly periodic, but this is obscured by the two other contributions from the
complex conjugate eigenvalues and eigenvectors, unless of course the real eigenvector alone
defines the deflexion in some span. Moreover, there may be zero average energy flux from span to
span when all of these three contributions are included, such as with ci ¼ 1 for i ¼ 1; 2; 3 but
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Fig. 4. (a) First pinned–pinned resonance (extensive mode at a ¼ p). (b) Second pinned–pinned resonance (extensive

mode at a ¼ 2p). (c) Elastic support deflexion profile (an extensive form at a ¼ 3:05600517). (d) Elastic support

resonance (extensive mode at a ¼ 4:1315).
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c4 ¼ 0 (to omit the increasing component due to the degeneracy) in representation (20) for the
deflexion, as shown in Fig. 4(c) for L ¼ 1:5 m: Thus at aE3:0560 the form of the extensive
deflexion predicted is not unique within an arbitrary scale factor c; unlike the familiar ‘‘pinned–
pinned’’ resonances discussed above.

For values of a where jmj ¼ 1 on the lower branch of the m curve, but which are not multiples of
p; the repeated eigenvalues l ¼ �1 and +1 (of multiplicity 2) and corresponding real eigenvectors
again determine unique extensive modes at those wave numbers (within an arbitrary scale factor).
Thus when G ¼ 25 and aE4:1315; the repeated eigenvalue l ¼ �1 and the eigenvector
ð0:3840;�0:3965; 0:7345; 0:3947Þ yield the extensive mode

ZðxÞ ¼ cð�1Þn 0:3840 cosh 4:1315
x

L
� n

� �h i
� 0:3965 sinh 4:1315

x

L
� n

� �h in
þ 0:7345 cos 4:1315

x

L
� n

� �h i
þ 0:3947 sin 4:1315

x

L
� n

� �h io
; ð25Þ

for n ¼ 0;71;72;y—cf. Fig. 4(d), where again L ¼ 1:5 m but in this case the scale factor has
been chosen to be c ¼ 0:9; to render a mode of unit magnitude. However, unlike the ‘‘pinned–
pinned’’ resonances, it is notable that the amplitude maxima occur at the elastic supports.
When aE6:4845; the repeated eigenvalue l ¼ þ1 and corresponding eigenvector
ð0:0998;�0:0995; 0:9850; 0:0992Þ yield the extensive mode

ZðxÞ ¼ c 0:0998 cosh 6:4845
x

L
� n

� �h i
� 0:0995 sinh 6:4845

x

L
� n

� �h in
þ 0:9850 cos 6:4845

x

L
� n

� �h i
þ 0:0992 sin 6:4845

x

L
� n

� �h io
; ð26Þ

for n ¼ 0;71;72;y; with a wavelength half that of the a ¼ 4:1315 mode and with amplitude
maxima again occurring at the elastic supports. There is of course no average energy transfer from
span to span in either case, since each respective eigenvector is real. Thus two resonant ‘‘elastic
support’’ extensive modes have been identified, with respective deflexions given by Eqs. (25) and
(26) distinguished by maxima at the supports, but apart from a phase shift are otherwise in one-
to-one correspondence with the a ¼ p and 2p ‘‘pinned–pinned’’ resonances with respective
deflexions given by Eqs. (23) and (24). Larger wave number (shorter wavelength) ‘‘elastic
support’’ modes, at the successively larger values of a where jmj ¼ 1 but which are not multiples of
p; may likewise be identified.

In passing, one may of course also determine the form of any spatially damped mode
(corresponding to an acceptable eigenvalue, or acceptable reciprocal eigenvalue, of modulus less
than 1). In Section 4, we observed that the reciprocal pair of eigenvalues corresponding to the
upper branch of the real m curve are real after this branch passes through þ1 (i.e., for any a greater
than about 3.0560), and one of the pair has magnitude less than 1. A spatially damped mode is
defined by this eigenvalue of magnitude less than 1, not only for spans to the right but also for
spans to the left, since it is equivalent to the reciprocal of the eigenvalue of magnitude greater than
1. Thus with wave numbers of the resonant extensive modes particularly in mind, at a ¼ p the
relevant acceptable eigenvalue (or reciprocal eigenvalue) of magnitude less than 1 was calculated
to be 0.2310, with the corresponding real eigenvector f0:7129;�0:7013; 0; 0:2157g; and at
aE4:1315 it was found to be 0.0247, with the corresponding real eigenvector
f�0:7072; 0:7070; 0:0099; 0:0068g: The amplitudes of the associated spatially damped modes
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therefore involve factors 0:2310jnj and 0:0247jnj; respectively, for n ¼ 0;71;72;y; and
consequently, the amplitude of the spatially damped mode at a ¼ p or aE4:1315 becomes
negligible beyond one or two adjacent spans in each direction, even if it is comparable with the
amplitude of the extensive mode at some span. Amplitudes of the spatially damped modes at
larger resonant wave numbers attenuate even more, since the relevant real eigenvalue rapidly
tends to zero as a increases.

The frequencies in cycles per second for any mode may be calculated from the dispersion relation

f 

o
2p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIa4

4p2mL4

s
:

Physical parameters for the floating ladder track ðEIE5� 105 N m2; m ¼ 300 kg=m; L ¼ 1:5 mÞ
give approximately f ¼ 29 at a ¼ p and f ¼ 114 at a ¼ 2p; and f ¼ 27 at aE3:0560 and f ¼ 49 at
aE4:1315:

8. Summary

The natural vibration of a continuous beam on equidistant discrete elastic supports is defined by
the eigenvalues and eigenvectors of a transfer matrix, which relates the deflexion coefficient vector
for any one span to the deflexion coefficient vector at any other. At any wave number, the four real
or complex eigenvalues of the transfer matrix occur in reciprocal pairs. Any eigenvalue with
modulus less than or equal to 1 is acceptable, but only eigenvalues of modulus precisely 1 yield
extensive modes, characterised by non-zero amplitudes on every span (in the absence of dissipation).
Eigenvalues of modulus less than 1 yield spatially damped modes—i.e., deflexion contributions with
amplitudes vanishing at a distance from a particular displaced span. An energy integral formulation
of the mathematical problem provides further insight. Important resonant extensive modes
correspond to repeated eigenvalues 81 and zero average energy flux between spans.
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Appendix

The time average of

2
@Zi

@t

@3Zj

@x3
þ

@Zj

@t

@3Zi

@x3

 !
;
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is represented by the matrix display

0 0 0 �1 0 �p 0 r

0 0 1 0 p 0 �r 0

0 1 0 0 0 q 0 s

�1 0 0 0 �q 0 �s 0

0 p 0 �q 0 0 0 1

�p 0 q 0 0 0 �1 0

0 �r 0 �s 0 �1 0 0

r 0 s 0 1 0 0 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

;

where

p 
 cosh½kðx � nLÞ	 sin½kðx � nLÞ	 � sinh½kðx � nLÞ	 cos½kðx � nLÞ	;

q 
 cosh½kðx � nLÞ	 cos½kðx � nLÞ	 � sinh½kðx � nLÞ	 sin½kðx � nLÞ	;

r 
 cosh½kðx � nLÞ	 cos½kðx � nLÞ	 þ sinh½kðx � nLÞ	 sin½kðx � nLÞ	;

and

s 
 sinh½kðx � nLÞ	 cos½kðx � nLÞ	 þ cosh½kðx � nLÞ	 sin½kðx � nLÞ	:

Similarly, the time average of

2
@2Zi

@x@t

@2Zj

@x2
þ

@2Zj

@x@t

@2Zi

@x2

 !

is

0 0 0 1 0 �p 0 r

0 0 �1 0 p 0 �r 0

0 �1 0 0 0 q 0 s

1 0 0 0 �q 0 �s 0

0 p 0 �q 0 0 0 �1

�p 0 q 0 0 0 1 0

0 �r 0 �s 0 1 0 0

r 0 s 0 �1 0 0 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

Half the difference of these two matrix displays yields the matrix display in Section 6, representing
the time average of the energy flux defined by Eq. (21).

References

[1] H. Wakui, Ladder sleepers perform well in tests, Railway Gazette International 159 (1997) 589–592.

[2] H. Wakui, N. Matsumoto, H. Inoue, Technological innovation in railway structure system with ladder track

system, Proceedings of the World Congress on Railway Research (WCRR ’97), Vol. B, Florence, 1997 pp. 61–67.

ARTICLE IN PRESS

R.J. Hosking et al. / Journal of Sound and Vibration 272 (2004) 169–185184



[3] S.L. Grassie, R.W. Gregory, D. Harrison, K.L. Johnson, The dynamic response of railway track to high frequency

vertical excitation, Journal of Mechanical Engineering Science 24 (1982) 77–90.

[4] T.X. Wu, D.J. Thompson, A double Timoshenko beam model for vertical vibration analysis of railway track at high

frequencies, Journal of Sound and Vibration 224 (1999) 329–348.

[5] C.M. Harris, C.E. Crede, Shock and Vibration Handbook, Vol. 1, McGraw-Hill, New York, 1961, pp. 7–19 to 7–22.

[6] S. Kukla, The Green function method in frequency analysis of a beam with intermediate elastic supports, Journal of

Sound and Vibration 149 (1991) 154–159.

[7] S. Kukla, Free vibrations of axially loaded beams with concentrated masses and intermediate elastic supports,

Journal of Sound and Vibration 172 (1994) 449–458.

[8] Y. Luo, Frequency analysis of infinite continuous beam under axial loads, Journal of Sound and Vibration 213 (1998)

791–800.

[9] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965, pp. 4–5.

ARTICLE IN PRESS

R.J. Hosking et al. / Journal of Sound and Vibration 272 (2004) 169–185 185


	Natural flexural vibrations of a continuous beam on discrete elastic supportsDedicated to the memory of B.C. Rennie
	Introduction
	The mathematical model
	Natural vibrations
	Eigenvalues of the transfer matrix
	Spatially damped and extensive modes
	Energy transfer
	Resonance
	Summary
	Acknowledgements
	Appendix
	References


